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Abstract. Generalized synchronization in a drive-response Chua circuits is investigated. A cascade of
transitions to GS is observed with increasing the interaction strength. The mechanism on the transitions
to GS is given based on the asymptotic behaviors of response dynamics.

PACS. 05.45.-a Nonlinear dynamics and chaos – 05.45.Xt Synchronization; coupled oscillators

Synchronization in interacting chaotic systems has been
an active research field during the past decade because of
its importance in nonlinear dynamics and potential ap-
plications in communication [1–4]. Chaos synchronization
has been categorized as complete synchronization (CS) [5],
generalized synchronization(GS) [6,7], lag synchronization
(LS) [8] and phase synchronization (PS) [9]. Among these
various types of synchronies, CS in interacting identical
systems has been exhaustively investigated. As an exten-
sion of CS to nonidentical systems, GS implies the hooking
of the output of one system to a given function of the out-
put of the other system. Generally, GS is discussed in the
master-slave configuration and has been found, numeri-
cally and experimentally, in the drive-response systems,
the coupling systems and spatiotemporal systems [10–14].
Up to now, most of works focus on the search of GS in
different systems and the development of methods on de-
tecting GS. However a fundamental problem about the in-
fluences of asymptotic dynamical behaviors in master and
slave dynamics on GS is seldom paid attention on. Fur-
thermore there is an ordinary view that GS will be hold
once it is established when the interaction between drive
and response is stronger than a threshold value. However
in this paper we will show that the relation between the
status of GS and the strength of interaction is not simple:
with the increase of the interaction strength, GS could
be established, destroyed and reestablished. Based on the
asymptotic behavior of response dynamics, an explanation
on such a scenario is given.

The model adopted here is a drive-response system,
where both the drive and response systems are Chua cir-
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cuits. The system is written as

ẋd = α[rd(yd − xd) − f(xd)]
ẏd = rd(xd − yd) + zd

żd = −βxd

ẋr,a = α[rr(yr,a − xr,a) − f(xr,a)]
ẏr,a = rr(xr,a − yr,a) + zr,a + ε(yd − yr,a)
żr,a = −βxr,a

f(x) = m0x + 0.5m1[|x + a| − |x − a|]
+ 0.5m2[|x + b| − |x − b|] (1)

where the subscripts d, r and a denote the coordinates
for the drive, the response and the auxiliary systems (the
second identical response system), respectively. ε is the
interaction strength, parameters α = 10, β = 5.97, m0 =
2.05, m1 = −0.35, m2 = −2.45, a = 2, b = 10.2 are fixed.
The bifurcation diagram for isolated Chua circuit in the
range of 0.52 < rd < 0.537 is plotted in Figure 1 where the
transitions from periodicity to chaos are observed. When
rd < 0.534, the Chua circuit has a single-scroll attractor
(either periodic or chaotic dynamics); otherwise, double-
scroll attractor is found.

In numerical simulations, the realization of GS can be
detected by the auxiliary-system method or the negative-
ness of the largest conditional Lyapunov exponent (LCLE)
in response dynamics [7]. For example in the auxiliary sys-
tem method, GS is stable if we have xr = xa, yr = ya,
zr = za no matter what the initial conditions for response
and its auxiliary systems are.

First we let rd = 0.525 and rr = 0.535, which leads
to that the drive system has a single-scroll chaotic attrac-
tor while the isolated response system has a double-scroll
attractor. The status of GS is studied by varying the inter-
action strength ε. With the increase of ε, the alternation
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Fig. 1. The bifurcation diagram of isolated Chua circuit
against rd. The other parameters have been declared in the
text.

Fig. 2. The phase diagrams of the response system (black
lines) and the relation between the response and auxiliary
systems (gray lines) for the different coupling strength ε.
rd = 0.525, rr = 0.535. (a–f) ε = 0.01, 0.59, 0.83, 2.0, 3.4,
5.0, respectively.

between states of generalized synchronization and desyn-
chronization can be found in Figure 2. Figure 2 exhibits
the trajectory of response system on the plane of xr and
yr (bold lines) and the relation between the response and
its auxiliary system on the plane of xr–xa (gray circles)
for different interaction strengths. It follows from Figure 2
that the status of GS between the drive and response sys-
tems remarkably relies on the interaction strength. In Fig-
ure 2a, the response system keeps its chaotic double-scroll
attractor when the interaction is weak, i.e., ε = 0.01, and
the relation between xr(t) and xa(t) is disordered. Clearly
GS is not built yet. As the interaction strength increases
to ε = 0.59, one can see that the attractor of the response
system in Figure 2b becomes much more regular compar-
ing with that in Figure 2a. Especially, the response and
its auxiliary systems obey xr(t) = xa(t) which means that
GS happens. Interestingly, further increasing the interac-
tion strength, for example ε = 0.83 in Figure 2c, GS is
destroyed and the attractor of the response system be-
comes more irregular again. The status of GS is restored
in Figure 2d where ε = 2.0 and the typical trajectory of
the response system only shows weak irregularity. The al-

Fig. 3. (a) The bifurcation diagram of the response system.
(b) The largest conditional Lyapunov exponent of the response
system. (c) Synchronization error between the response and the
auxiliary systems against the interaction strength. rr = 0.535,
rd = 0.521.

ternation of GS and desynchronization can be repeated
once more. For example, desynchronization (or GS) is ob-
served in Figure 2e [or 2f] with ε = 3.4 (or ε = 5). It is
worth to note that the GS in Figure 2f is different from
those in Figures 2b and 2d in two respects: the typical
trajectory in Figure 2f shows strong irregularity and GS
will be hold even we further increase ε.

From Figure 2 we can know that the status of GS be-
tween the driving and response Chua circuits is strongly
dependent on the interaction strength. Why does the tran-
sition to GS in equation (1) own such a scenario illus-
trated in Figure 2? Why do the typical trajectories of
the response in Figures 2b and 2d look like regular or-
bits? To answer these questions, we consider the effects
of different drive dynamics on the status of GS. We let
rd = 0.521, this makes the drive system to be periodic.
To systematically investigate the GS between the drive
and response systems, we first plot the bifurcation dia-
gram of the response system against ε in Figure 3a. The
bifurcation diagram displays the alternations of periodic
and chaotic behaviors. Especially, double-scroll attractors
for both periodic and chaotic response dynamics yield to
single-scroll one at ε < 4.97. Furthermore, the LCLE of
the response system is numerically computed and plotted
in Figure 3b. Apart from narrow periodic windows with
negative Lyapunov exponent, we can find in Figure 3b that
there exist three large regimes with negative LCLE, i.e.,
0.37 ≤ ε ≤ 0.58, 0.79 ≤ ε ≤ 3.1, and ε ≥ 4.97. Consider-
ing the fact that the periodic regimes appeared in Figure 3
is forced by a periodic drive, it is clear that the regimes
with negative LCLE correspond to those regimes with pe-
riodic behaviors. Since the negativeness of LCLEs means
that GS between the drive and response systems has been
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Fig. 4. (a–c) All curves are same as Figures 3a–3c with rd =
0.523.

established, we know that there is a direct correspondence
between the status of GS and the periodicity in response
dynamics when drive dynamics is periodic.

To further check the status of GS, we compute the syn-
chronization error between the response and the auxiliary
systems. The synchronization error is defined as

∆ =

√
1
T

∑
[(xr − xa)2 + (yr − ya)2 + (zr − za)2]. (2)

Figure 3c shows the relation between ∆ and ε. In contrast
to the three large regimes with negative LCLE in Fig-
ure 3b, we can find in Figure 3c that the synchronization
error ∆ is equal to zero only for ε ≥ 4.97 while ∆ may be
zero or nonzero in other two large regimes regardless of
negative LCLE. Actually such a phenomenon comes from
a pair of anti-phase solutions of the response system. This
phenomenon, the drive system leads the response to dif-
ferent solutions even if GS is built, is not a coincidence
and can be found in other response dynamics with sym-
metrical double-scroll structure, i.e., Lorenz system [15].

In Figure 3 we can see alternation of synchronization
and desynchronization. The discussions above are for peri-
odic drive dynamics, to investigate how the drive dynam-
ics influences the transitions to GS and then how the re-
sults in Figure 3 are related to Figure 2, we let rd = 0.523
where the drive system is in weak chaos (see Fig. 1). The
bifurcation diagram against ε is shown in Figure 4a. It
is interesting to find that Figure 4a is much similar to
Figure 3a despite that the branches of periodic solutions
in Figure 3a are broadened where irregularity steps in.
The similarity between Figures 3a and 4a can be further
confirmed by the plot of LCLE in Figure 4b and the syn-
chronization error in Figure 4c. The three large regimes
with stable GS locates at the roughly same places as Fig-
ure 3b regardless that there are no more periodic solu-
tions. A heuristic explanation can be given on the fact
that the stable GS regime is hardly influenced by drive
dynamics. Though there is no periodic orbit in the GS

Fig. 5. (a–c) The same as Figure 3 with rd = 0.525.
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Fig. 6. (a, b) The largest conditional lyapunov exponent of
the response system with rd = 0.5265 and rd = 0.5268, respec-
tively.

regimes for weak chaotic drive, the broadened orbits will
spend most of time in the neighbor of the previous periodic
orbits under the periodic drive. Since the calculation of
LCLE only involves the location of an orbit in the response
phase space, we know the LCLE of the broadened orbit
is most likely to be negative either by the consideration
of continuity. Such an explanation can be extended to the
drive dynamics deep into chaos, i.e., the drive system with
rd = 0.525. The bifurcation diagram in Figure 5a for the
response system has almost lost the resemblance with Fig-
ure 3a. Nevertheless, the plots of the LCLE (see Fig. 5b)
and the synchronization error (see Fig. 5c) still show the
three regimes for GS as periodic drive does, which is also
in concord with the results in Figure 2.

As increasing the parameter rd of the drive, i.e., the
drive system is more stronger chaotic, we can find a trend
in Figure 6 that the first stable GS regime is disappear-
ing, and the other two GS regimes is emerging when
the drive parameter rd is changing from 0.5265 (Fig. 6a)
to 0.5268 (Fig. 6b). The phenomenon of transition to
GS is asymptotically disappearing. To show this trend
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Fig. 7. The phase diagram for GS on the parameters rd−ε
plane. rr = 0.535. The values of ε between two dot lines,
two triangle lines, and above star line, correspond to regimes
for GS. Lines and blank correspond to synchronization and
desynchronization regimes.

completely, we plot the phase diagram for GS on the
parameter plane of rd and ε in Figure 7. In Figure 7
there are three stable GS regimes (corresponding to lines)
when rd arranges from 0.521 to 0.525, which correspond
to change of drive system from periodic to weak chaotic
state. This changing behaviors of the drive result in the
asymptotic behaviors of the response (from Figs. 3 to 5).
Continue to increase the drive parameter rd to 0.527 in
Figure 7, that means the drive is stronger chaos, three
GS regimes have great changes, the first regime trends to
shrink and the other regimes trend to emerge. This asymp-
totic behaviors of the response have great change while the
parameter rd is far away from 0.521. And when the drive
dynamics is deep into chaos, i.e., rd > 0.5275, there is
only one GS regime for ε > 0.98 (we eliminate periodic
windows near rd = 0.527 and corresponding weak chaos
regime), and this asymptotic effect of the response under
the periodic drive completely disappears. In Figure 7 when
rd > 0.5275, we can observe the familiar GS phenomenon
that the response and the drive systems reach GS and keep
on when the coupling strength is larger than the thresh-
old value. And the threshold value of the coupling becomes
stronger as the parameter mismatch of the drive and the
response is large. It is clear that the three large GS do-
mains originated from periodic windows in previous fig-
ures do disappear and merge together with increasing rd.

From above analysis, we can see that this transition
of GS exists when the drive-response systems are satisfied

some conditions, i.e., the drive is nearby the periodic or-
bits and shows weak chaos, and the response system by
the periodic drive must have different GS regions. Actu-
ally we find similar phenomenon in the Rossler system and
approve our analysis.

In summary, we have studied the GS in interacted
Chua circuits. We find that there are several GS regimes
separated by desynchronization regimes with the increase
of interaction strength. By studying the influences of the
drive dynamics on the status of GS, we find that the peri-
odic windows in the response dynamics under the influence
of the periodic drive play a key role on the formation of
GS regimes. This phenomenon results from the asymptotic
effect of response system under the weak chaotic dynam-
ics of the drive system and it isn’t restricted to the Chua
system.
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